Yolico

Detailed Work Makes Quality Our Quality Equals Perfection

YOLICO ELECTRIC CO., LTD.

Ln.516, Sec.1, Wanshou Rd., Guishan Dist. Taoyuan City Taiwan TEL: +886-2-82005898 · FAX: +886-2-82005899 www.yolico.com.tw • E-mail: info@yolico.com.tw

YD5000

12.12

Heavy Duty Flux Vector Inverter

ISO9001 **(€**

YD5000 General Functions

• Friendly easy Operation

Parameters can be selected easily by logic groups

Dynamic Self-Study Mode

Self-Study Mode works at vector control Inverter can be set with details of motor nameplate

• Various V/f Curve Setting

There are totally 15 preset V/f curves setting and 1 adjustable V/f curve setting can be selected, such as High Starting Torque Curve, Variable Torque Curve, High Speed Operation. They can match different kind of loadings, also Uer-set V/f curve can work at PG Vector Control Mode as Well.

Various Frequency Command Given

Monitor Function

The following items can be monitored with the Digital Operator. Frequency Command, Output Frequency, Output Current, Motor Speed, Output Voltage, Main Circuit DC Voltage, Output Power, Torque Command, Input Terminal Status, Operating Status, Speed Deviation, PID feedback Value, Fault History, and so on.

PID Control Function

PID Control Function may through controlling the Rotational Speed of motor to achieve the controlled Process Quantity as the Target, this process Quantity may be Temperature, Flow, Pressure, Speed, and so on.

The purpose of PID control is making the Process Quantiry Stabilizing as the Target (setting) value. The PID control with Feedforward Speed setting Function is comprehensive used in Synchrunization or Winder / Unwinder Control System.

The Given Command and Feedback Quantity decide the output Frequency of the Inverter.

PID Control Function

Over Load, Over Current, Over Voltage, Over Torque, Low Voltage, Phase Loss, Ground Fault, and so on. To make equipment operated properly.

Energy Saving Control

Automatically adjust output voltage according to loadiing at vector control in order to give better performance when motor operates on different load. It improves motor efficiency then saves energy.

Option Card
RS485/232 communication card
Profibus Card
PG Feedback Card
Option Card for Extruder Application
Voltage & Current Converter Card

YD5000 The Unique Function with PG Flux Vector Control

Four Quadrants Operation

The Torque Direction could be opposite with Motor Speed Direction such as the process of lift running down with Heavy Load, Unwinding Process, etc.

DROOP Control Function

It allows user to set the Motor Slip Value, when Arigidity Load is Operated with two motors (such as a Crane / Conveyor). Also, it is easy to make adjustment watching the Load Balance, because the value of Slip can be set arbitrarily.

• Torque

For all Winding Device, the Accelerating and Decelerating Torque will be varied by the Load Situation. For the Central Winding System, the requiring Torque will be varied following the diameter of Spool Piece. What do you need is a Device which can precisely Control the Output Torque in Torque Control Mode. Using the Torque Control Function of YD5000 series Inverter can solve this problem easier. Take an example : The tip of Winding Operation is Controlling the Tension of Winding Material. For keeping the constant Tangential Tensile Strength in the different Line Speed or Rotating Diamemter Situation, the Inverter must follow the Torque Reference in a huge range.

Torque Control Function

In the Torque Control, the Motor output the Torque accords to the Torque Command by the Analog Input. In according to reach the Output Torque, Inverter will not control the Motor Speed, the Output Frequency will be Increased / Decreased by Inverter Automatically. To avoid the Motor Over Speeding and the Load Torque lose seddenly, we suggest to use Speed Limit Function.

• Torque Improvement

In PG Sensorless Control, using the Torque Compensation in order to make early response to Torque Command when Start the motor. It helps the Heavy Frictional Load Application which requires the Starting Torque, such as Traveling / Hoisting / Lifting, and so on.

Zero Servo Control Function

It helps motor can output 100% holding Torque at 0 speed. It sufficient guarantee the positioning ability of Device when in Stopping Situation.

ECO-Friendly - Better Designing for Better Environment

High Harmonic Solution

Low Audio Noise

Yolice

YD5000 Connection Example (Diagram)

Please follow the Diagram making a Wire Connection

When using the Digital Operator, the Motor can be operated by wiring only the Main Circuit

YD5000 Standard Specification

	YD5000	1P5	2P2	3P7	5P5	7P5	011	015	018	022	030	037	045	055	075	093	110	132	160	185	200	250	250	280	315	355	400	450	500	630
Ap	plicable Motor Capacity (kW)	1.5	2.2	3.7	5.5	7.5	11	15	18	22	30	37	45	55	75	93	110	132	160	185	200	220	250	280	315	355	400	450	500	630
H	Capacity (kVA)	3.7	4.7	6.1	11	14	21	26	31	37	50	61	73	98	130	140	170	200	230	260	300	340	380	430	460	490	519	585	650	780
1 Outp	Rated Ouput Current (A)	4.8	6.2	8	14	18	27	34	41	48	65	80	96	128	165	180	224	260	302	340	380	450	470	530	605	695	788	890	986	1185
atec	Max. Output Voltage(V)				-						3Ø	380/	400/4	415/4	160V(Propo	ortior	nal to	Input	Volta	ige)									
	Rated Output Frequency											Up	o to 40	00Hz	(Aval	iable	by Pr	ograi	mmin	g)										
>	Voltage, Frequency										_		3Ø S	380/4	400/4	415/4	160V,	50/6	0Hz	-										_
ddno	Allowable Voltage														+10	0%, -1	5%													
wer	Allowable Frequency															+5%														
2	Fluctuation															±970														
	Control Method												Curre	ent Fl	ux Ve	ctor, S	Sine \	Vave	PWM											
	Torque Characteristic												150%	at 1H	lz (15	0% at	: 0 Rp	om wi	th PG)										
	Speed Control Range													1:10	00 (1:	1000	with	PG)												
	Speed Control Accuracy											-	±0.2%	o (25°	C ± 1	0°C) (:	±0.02	2% wi	th PG)										
	Speed Control Response													51	Hz (30)Hz w	ith P	G)												
υ	Torque Limits									Prov	ided	(4 Qu	adrar	nt Ste	ps ca	n be o	chang	ged b	y Para	mete	er Set	ting)								
	Torque Control Accuracy															±5%														
e le	Frequency Control Range														0.1	~ 400)Hz													
ara	Frequency Accuracy (Tem-							D	igital	Refer	ence	: ±0.0	1% (-1	10°C -	~ +40	°C), A	nalo	g Ref	erence	e: ±0.	1% (2	5°C±	: 10°C	_)						
5	Frequency Setting																													
ontro	Resolution								Dig	gital R	lefere	ence:	0.01H	z, An	alog	Refere	ence:	0.031	Hz/ 60)Hz (1	1 bits	s + Sig	gn)							
ŭ	Output Frequency														(0.01H	z													
	Resolution (Caculation)												1.50	0/ De	to al C		* 6	1												
	Overload Capacity												150	1% Ka	tea C	urren	t tor	I mir	nute											
	Accoloration/												Analo	sg-n	0~+	100,0	1~ IU	IV, 4-2	20mA											
	Deceleration Time					0.	01~6	5000S	econ	ds(4 S	elect	table	Comb	pinati	ons o	fInde	epen	dent	Accele	eratio	n anc	Dec	elerat	tion S	etting	gs)				
	Braking Torque													A	pprox	imate	ely 20)%												
	Motor Protection											Prot	ectior	n by E	lectri	c The	rmal	Over	load F	Relay										
	Instaneous Overcurrent Protection											Stop	at ap	prox	. 200	% of F	Rated	Outp	out Cu	irrent										
	Fuse Blown Protection													St	ops a	s Fuse	e Blov	wn												
SUIS	Overload Protection												150	% Ra	ted C	urren	t for	1 mir	nute											
	Overvoltage Protection										Stop	os wh	en Ma	ain Ci	rcuit	DC Bi	is Vo	tage	is app	prox. 8	320V									
P	Undervoltage Protection										Stop	os wh	en Ma	ain Ci	rcuit	DC Bi	is Vo	tage	is app	prox. 3	380V									
ective	Momentary Power Loss Ridethru		Sto	ops fo	or 15m	nS or	more	. By se	electi	ng the	e Mo	ment	ary Po	wer l	Loss I	Node	, ope	ratior	n can l	be co	ntinu	ed if I	Powe	er is re	store	d wit	hin 2	Seco	nds	
101	Cooling Fin Overheating													Porte	ectior	n by T	herm	nistor												
	Stall Prevention									S	tall P	reven	tion o	during	g Acc	elerat	ion,	Runni	ing, D	ecele	ratior	ı								
	Grounding Protection											Prote	tion	by Ele	ectric	Circu	it (O	vercu	irrent	Level)									
	Charge Indicator (Internal LED)									Lit	wher	n the	Main	Circu	it DC	Bus V	oltag	e is a	pprox	. 50V	or m	ore								
	Ambient Operating Humidity														90%	6 RH r	nax.													
	Ambient Operating Temperature											-10°	+ ~ C ~ + 10°۱	40°C C ~ +	(Enclo 45°C	osed) (Opei	Wall- n Cha	Mour Issis T	ited T vpe)	ype)										
C O	Storage Temperature														-20°	C ~ +I	60°C													
	Application Site												Indo	or (No	o Cori	rosive	Gas,	Dust	, etc.)											
	Altitude														100	0 m n	nax.													
	Vibration									1	0~2	20Hz,	9.8m	/S² (1	G) ma	ax.; 20) ~ 50)Hz, 2	m/S²	(0.2G) max									
	Profibus Communication													Ye	s (by	optio	n Ca	rd)												
	PG Flux Vector Control													Ye	es (by	optio	n Ca	rd)												
SUIS	Zero Sever													Ye	es (by	optio	n Ca	rd)												
DIIC	RS-485 Communication														Yes	(Built	:-In)													
วี	PID Function														Yes	(Built	:-In)													
	Speed Limit Function of													Ye	s (by	optio	n Ca	rd)												
	Torque Control Mode													10	.5 (.5.9	5000	ca	,												

YD5000 Dimension

Ŭť.

С

Drawing 4

D.

			ncion	Dimo			Applicable Motor
Drawing							
	D	C	B1	В	A1	A	Capacity (kW)
Drawing 1	7	200	300	316	116	146	1.5~3.7
	7	210	324	340	170	200	5.5~7.5
Drawing 2	9	230	364	390	150	239	11~15
	11	280	430	463	230	337	18.5~22
	11	280	595	623	230	338	30~45
Drawing 3	15	369	740	774	325	465	55~93
Diawing 5	15	401	895	924	445	585	110~185
1	15	404	1015	1044	625	765	200~250
1	18	500	1600	1645	800	1050	280~400
Drawing 4		500		2000		1200	450~630

Remote Operator Mounting Kit Installing Dimension

7

Packaging Machinery Food Machinery Chemical Industry Treadmill

